Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
PLoS One ; 18(5): e0285937, 2023.
Article in English | MEDLINE | ID: covidwho-2323674

ABSTRACT

BACKGROUND: In March 2022, the Omicron variant of SARS-CoV-2 spread rapidly in Shanghai, China. The city adopted strict non-pharmacological intervention (NPI) measures, including lockdown (implemented on March 28 in Pudong and April 1 in Puxi) and blanket PCR testing (April 4). This study aims to understand the effect of these measures. METHODS: We tabulated daily case counts from official reports and fitted a two-patch stochastic SEIR model to the data for the period of March 19 to April 21. This model considered two regions in Shanghai, namely Pudong and Puxi, as the implementation of control measures in Shanghai was carried out on different dates in these regions. We verified our fitting results using the data from April 22 to June 26. Finally, we applied the point estimate of parameter values to simulate our model while varying the dates of control measure implementation, and studied the effectiveness of the control measures. RESULTS: Our point estimate for the parameter values yields expected case counts that agree well the data for both the periods from March 19 to April 21 and from April 22 to June 26. Lockdown did not significantly reduce the intra-region transmission rates. Only about 21% cases were reported. The underlying basic reproduction number R0 was 1.7, and the control reproduction number with both lockdown and blanket PCR testing was 1.3. If both measures were implemented on March 19, only about 5.9% infections would be prevented. CONCLUSIONS: Through our analysis, we found that NPI measures implemented in Shanghai were not sufficient to reduce the reproduction number to below unity. Thus, earlier intervention only has limited effect on reducing cases. The outbreak dies out because of only 27% of the population were active in disease transmission, possibly due to a combination of vaccination and lockdown.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Communicable Disease Control , China/epidemiology , Disease Outbreaks/prevention & control
2.
J Biol Dyn ; 16(1): 859-879, 2022 12.
Article in English | MEDLINE | ID: covidwho-2187651

ABSTRACT

Contact tracing is an important intervention measure to control infectious diseases. We present a new approach that borrows the edge dynamics idea from network models to track contacts included in a compartmental SIR model for an epidemic spreading in a randomly mixed population. Unlike network models, our approach does not require statistical information of the contact network, data that are usually not readily available. The model resulting from this new approach allows us to study the effect of contact tracing and isolation of diagnosed patients on the control reproduction number and number of infected individuals. We estimate the effects of tracing coverage and capacity on the effectiveness of contact tracing. Our approach can be extended to more realistic models that incorporate latent and asymptomatic compartments.


Subject(s)
Communicable Diseases , Epidemics , Humans , Contact Tracing/methods , Epidemiological Models , Models, Biological , Communicable Diseases/epidemiology
3.
Can J Stat ; 49(4): 1018-1038, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1487455

ABSTRACT

Asymptomatic and pauci-symptomatic presentations of COVID-19 along with restrictive testing protocols result in undetected COVID-19 cases. Estimating undetected cases is crucial to understanding the true severity of the outbreak. We introduce a new hierarchical disease dynamics model based on the N-mixtures hidden population framework. The new models make use of three sets of disease count data per region: reported cases, recoveries and deaths. Treating the first two as under-counted through binomial thinning, we model the true population state at each time point by partitioning the diseased population into the active, recovered and died categories. Both domestic spread and imported cases are considered. These models are applied to estimate the level of under-reporting of COVID-19 in the Northern Health Authority region of British Columbia, Canada, during 30 weeks of the provincial recovery plan. Parameter covariates are easily implemented and used to improve model estimates. We compare two distinct methods of model-fitting for this case study: (1) maximum likelihood estimation, and (2) Bayesian Markov chain Monte Carlo. The two methods agreed exactly in their estimates of under-reporting rate. When accounting for changes in weekly testing volumes, we found under-reporting rates varying from 60.2% to 84.2%.


Le recours à des protocoles de tests restrictifs et l'existence de formes asymptomatiques et paucisymptomatiques de la COVID­19 contribuent à la non détection de cas COVID­19. Pour comprendre la véritable gravité de l'épidémie, il est primordial d'estimer correctement le nombre de cas non détectés. A cette fin, les auteurs de ce travail proposent un nouveau modèle hiérarchique des dynamiques de la maladie basé sur l'approche de N­mélanges de population cachée. Ces modèles utilisent trois types de données régionales, à savoir, les nombres de cas déclarés, guéris et décédés. En faisant appel à l'amincissement binomial (binomial thinning) et en traitant les nombres de cas déclarés et guéris comme étant sous­évalués, les auteurs proposent une modélisation de l'état réel de l'épidémie basée sur une partition de la population malade en trois catégories : cas actifs, cas guéris et cas décédés. Cette partition tient compte des cas de propagation intérieure et des cas importés. Les auteurs ont utilisé les données recueillies durant les trente semaines du plan de rétablissement provincial de la région de l'Autorité sanitaire du Nord de la Colombie­Britannique, Canada pour illustrer leur approche et estimer le niveau de sous­déclaration COVID­19 associé. Des covariables peuvent être facilement incorporées au modèle proposé et améliorer la qualité des estimations. Deux méthodes d'ajustement sont retenues: (1) l'estimation par maximum de vraisemblance, et (2) la méthode de Monte Carlo par chaînes de Markov. Les estimations du taux de sous­déclaration obtenues par ces deux méthodes concordent exactement et varient entre 60,2% et 84,2% après ajustement des variations des volumes de tests hebdomadaires.

4.
Infect Dis Model ; 6: 924-929, 2021.
Article in English | MEDLINE | ID: covidwho-1322122

ABSTRACT

Quarantine is a crucial control measure in reducing imported COVID-19 cases and community transmissions. However, some quarantined COVID-19 patients may show symptoms after finishing quarantine due to a long median incubation period, potentially causing community transmissions. To assess the recommended 14-day quarantine policy, we develop a formula to estimate the quarantine failure rate from the incubation period distribution and the epidemic curve. We found that the quarantine failure rate increases with the exponential growth rate of the epidemic curve. We apply our formula to United States, Canada, and Hubei Province, China. Before the lockdown of Wuhan City, the quarantine failure rate in Hubei Province is about 4.1%. If the epidemic curve flattens or slowly decreases, the failure rate is less than 2.8%. The failure rate in US may be as high as 8.3%-11.5% due to a shorter 10-day quarantine period, while the failure rate in Canada may be between 2.5% and 3.9%. A 21-day quarantine period may reduce the failure rate to 0.3%-0.5%.

5.
Proc Natl Acad Sci U S A ; 117(44): 27703-27711, 2020 11 03.
Article in English | MEDLINE | ID: covidwho-880729

ABSTRACT

Historical records reveal the temporal patterns of a sequence of plague epidemics in London, United Kingdom, from the 14th to 17th centuries. Analysis of these records shows that later epidemics spread significantly faster ("accelerated"). Between the Black Death of 1348 and the later epidemics that culminated with the Great Plague of 1665, we estimate that the epidemic growth rate increased fourfold. Currently available data do not provide enough information to infer the mode of plague transmission in any given epidemic; nevertheless, order-of-magnitude estimates of epidemic parameters suggest that the observed slow growth rates in the 14th century are inconsistent with direct (pneumonic) transmission. We discuss the potential roles of demographic and ecological factors, such as climate change or human or rat population density, in driving the observed acceleration.


Subject(s)
Pandemics/history , Plague/epidemiology , Plague/history , Animals , History, 15th Century , History, 16th Century , History, 17th Century , History, Medieval , Humans , London , Plague/transmission , Population Density , Rats
SELECTION OF CITATIONS
SEARCH DETAIL